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» Motivation
» Peer-to-peer data mining growing area of research for
analyzing data content, modeling user behavior and
computing network statistics
» EXpectation maximization useful for data clustering, anomaly
detection, target tracking, and density estimation

» Contribution
» Provably correct local distributed asynchronous algorithm for
monitoring gaussian mixture model parameters in
peer-to-peer networks using expectation maximization
» Shows how second order statistics can be directly monitored
In a peer-to-peer network

» Application
» Clustering and fault isolation in (1) large scale sensor
networks such as embedded aircraft sensors on systems and
subsystems, (2) national air space for identifying anomalous
aircrafts

Figure: Centralized vs. in-network computation

Overview of approach

» Monitoring phase
» Each peer maintains estimate of prior probability, mean,
covariance of the global (all peers’) data
» When data changes, peers jointly track this change
» Triggers alarm if model is outdated with respect to global data
» Computation phase
Convergecast: Sample data from network, build new model
Broadcast: Send new model to all peers

Background

» Input
- Data stream at each peer S; = X1, X;2, . .. ,Zm
» kK gaussians
- Global input G = U S;

i=1,...,0
- Xjj: messages sent by P; to P;

» Set statistics
» Knowledge of P;: K; = S; U Xi i
PjEr/
- Agreement of P;, P A;j = Xi ;U X;;
- Withheld knowledge of P;, Pi: W;; = K; \ A;;

- Message: X;; = K; \ X;;

Convex stopping rule
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Figure: Convex regions

Expectation maximization

Log-likelihood:
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Algorithm details
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Example: For for monitoring 2% input: S; = {q,-,s,a (x,a s )}
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Initialization
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Do nothing > END

Figure: Flowchart of algorithm

Synthetic data experiments

» Simulated data consists of multivariate correlated gaussians
with arbitrary parameters

» Parameters changed at fixed simulator intervals
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Figure: Experimental results in monitoring mode
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Figure: Experimental results in closed loop mode

Conclusions

» First algorithm for monitoring gaussian mixture model
parameters in a local completely decentralized fashion

» Extensive experimental results show low communication cost
and correctness of results
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